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We report electron and hole drift mobilities in thin film polycrystalline CdTe solar cells based on

photocarrier time-of-flight measurements. For a deposition process similar to that used for

high-efficiency cells, the electron drift mobilities are in the range of 10�1–100 cm2/V s, and holes

are in the range of 100–101 cm2/V s. The electron drift mobilities are about a thousand times

smaller than those measured in single crystal CdTe with time-of-flight; the hole mobilities are

about ten times smaller. Cells were examined before and after a vapor phase treatment with CdCl2;

treatment had little effect on the hole drift mobility, but decreased the electron mobility. We are

able to exclude bandtail trapping and dispersion as a mechanism for the small drift mobilities in

thin film CdTe, but the actual mechanism reducing the mobilities from the single crystal values is

not known. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891846]

Thin film polycrystalline cadmium telluride solar mod-

ules are now manufactured in large quantities, and the con-

version efficiency of the best cells has recently surpassed

20%.1 Nonetheless, rather little is known about their photo-

carrier mobilities, which are crucial parameters for under-

standing the optoelectronic properties of materials and

devices.2,3 More than 25 yr ago, Takahashi et al. reported

electron drift mobilities of 15–25 cm2/V s in diodes based on

electrochemically deposited films of CdTe.4 This is well

below typical values of about 103 cm2/V s reported for single

crystals of CdTe.5–8 Hall effect measurements on thin films

also give fairly low mobilities, but an analysis of photo-Hall

measurements incorporating grain boundaries yielded an

intra-grain electron mobility of 3� 102 cm2/V s.9 This latter

value was proposed for thin film CdTe solar cell modeling in

one paper.10

In this Letter, we report direct time-of-flight measure-

ments of the photocarrier drift mobilities in thin film CdTe

solar cells prepared at First Solar. Photocarrier transit times

across the cells were as large as hundreds of nanoseconds.

For cells with higher open-circuit voltages (VOC), the elec-

tron drift mobilities range from 10�1–100 cm2/V s, and the

hole mobilities range from 100–101 cm2/V s. For reference,

we note that typical hole mobilities reported in single crys-

tals are around 102 cm2/V s.5 These results are summarized

in Fig. 1, where we show the correlation of electron and hole

drift mobilities for the thin film CdTe cells we have meas-

ured and also for single crystals as reported in the litera-

ture.5–8 In the figure, the solid black symbols represent

thin-film cells that did not receive a vapor phase CdCl2 treat-

ment and thus had markedly lower open-circuit voltages.

These cells have larger electron drift mobilities than the

treated cells, which is an unexpected finding.

In solar cells with large carrier mobilities, mobilities

affect the useful thickness of a cell mainly through the minor-

ity carrier diffusion length. Low carrier mobilities give rise to

additional effects on solar cells. As one example, the deple-

tion width of a film is significantly reduced by solar photo-

generation levels when carrier mobilities are low,11 and we

have seen evidence for this effect in photocapacitance

measurements on CdTe cells similar to those used for the

present work.12 Additionally, grain boundary recombination

has been proposed as limiting the open-circuit voltage in

thin-film CdTe cells. For low mobility materials, such recom-

bination is likely to be “diffusion limited”, in which case the

recombination time is inversely proportional to the minority

carrier mobility.13,14 The effect of vapor phase treatment,

which increased the open-circuit voltages of our cells while

reducing the electron drift mobility, is consistent with this

expectation.

Six coupons of CdTe solar cells were made at First

Solar for these experiments. Each coupon has 16 cells. We

have included a layer diagram in Fig. 1, which shows the

semi-transparent back contacts that are needed for electron

drift-mobility measurements. The typical transmittance of

this back contact is 0.3 at wavelengths from 500–800 nm.

We summarize properties for the six coupons in Table I.

Coupons 1–4 were deposited using the same process; coupon

FIG. 1. The drawing illustrates the main layers of the bifacial solar cells

used for the measurements. Top illumination (660 nm wavelength) generates

photocarriers near the CdS/CdTe interface, and bottom illumination gener-

ates photocarriers near the metal/CdTe interface. The graph shows the corre-

lation of the electron and hole drift mobilities in single crystals (SC),5–8 as

well as a summary of the present measurements on thin-film CdTe. The dif-

ferent symbols indicate the six different coupons; solid symbols are for

untreated coupons. Detail measurements for all six coupons are shown in

Table I.

0003-6951/2014/105(4)/042106/4/$30.00 VC 2014 AIP Publishing LLC105, 042106-1
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1 had no post-deposition treatment, and 2–4 have varying

treatments with vapor-phase CdCl2. Coupons 5 and 6 were

prepared using a somewhat different process; coupon 5 is

untreated, and coupon 6 was treated. In the table, we give the

open-circuit voltages measured under a solar simulator for

one cell from each coupon. Due to the resistance of the semi-

transparent back contact, the fill factors and solar cell effi-

ciencies are fairly low, and we will not report them here. We

also give the four parameters obtained in time-of-flight

measurements on each cell: the drift mobilities and the deep-

trapping mobility-lifetime products for electrons and for

holes.

For time-of-flight measurements, we reduced the sample

area by scribing small squares through the CdS/CdTe films

to give areas of about 10�2 cm2. Dark capacitance measure-

ments (see supplementary materials15) indicated that the

untreated cells were fully depleted at zero and reverse bias

voltages. Treated cells were not fully depleted, and a Mott-

Schottky analysis16 accounted for capacitance

measurements.

Time-of-flight (TOF) measures a transit time tT for an

initial distribution of photocarriers to be displaced a distance

L under the applied voltage V.17 We choose L to be d/2,

where d is the thickness of the CdTe layer. For an initial pho-

tocarrier distribution that is close to one contact, L¼ d/2 cor-

responds to collection of half of the total photogenerated

charge Q0 in the external circuit. TOF measurements were

done using a pulsed diode laser with 660 nm wavelength,

which is absorbed within about 0.25 lm in CdTe.18 Hole

mobilities are measured using front (glass) side illumination;

electrons were measured using back illumination. The laser

pulse width was about 4 ns, which is much shorter than the

product RC of the scribed cell’s capacitance C and the series

resistance R, which includes the 50 X electronics. The meas-

ured rise time tRC for a 50% charge response to a fast elec-

tronic step was about 40 ns in the small scribed cells.

Fig. 2 presents the graphs for a cell from the untreated

coupon 5; in this cell the electric field under reverse bias was

fairly uniform across the CdTe film. Fig. 2(a) shows the hole

photocharge transients Q(t) at four voltages using front

illumination; the photocurrent transient i(t) was recorded and

integrated to obtain Q(t). The bias voltage pulses were

1.0 ms long and were applied 50 ls before the laser pulse.

With a voltage of �1.0 V, the photocharge collected in

1.0 ls is about 5.1 pC, which we equate to the total charge

Q0 of holes photogenerated in the CdTe film by the laser

pulse. At smaller field magnitudes charge collection

within 1.0 ls is incomplete. This behavior is common in

time-of-flight measurements19 and is attributed to deep trap-

ping of carriers by defects during their transit.

Fig. 2(b) shows the analysis of these transients to obtain

a transit time tT for the photocarriers to drift halfway across

the sample. This “half collection” definition of tT is unusual

in single crystal work but is common in less ordered materi-

als. The rise time tR is the time required for the transient to

reach 50% of its ultimate charge. To calculate the transit

time tT, we corrected for the electrical response time tRC

using the approximation t2T ¼ t2R � t2RC:19 The vertical dashed

lines in Fig. 2(b) indicate the measured value tRC¼ 40 ns.

The solid lines in Fig. 2(b) are calculations of charge

transients that correspond to these transit times tT and to the

assumption that the initial photocharge distribution moves at

a constant drift-velocity after photogeneration at time t¼ 0.

The photocharge expression is then19

Q tð Þ ¼ Q0

st

2tT

� �
1� exp � t

st

� �� �
for t � 2tT ; (1)

where d is the layer thickness and st is a deep-trapping

lifetime.

The data taken at �1.0 V are not affected significantly

by deep-trapping (st � tT), and they show clearly that the

FIG. 2. Time-of-flight measurement at 293 K on a cell from coupon 5

(untreated). (a) Photocharge transients Q(t) for front illumination (through

the glass substrate) using a 4 ns laser pulse (660 nm wavelength). Results are

shown for several bias voltages. (b) Photocharge transients along with the

electronic risetime tRC (vertical gray line). The solid lines show the constant

drift-velocity model predictions corresponding to the transit times tT calcu-

lated for each transient. (c) Photocharge collected in 1 ls as a function of

bias voltage with front and back illumination (holes and electrons). Open

squares are for the hole measurements and open circles are for electron

measurements. The solid lines are fits to the Hecht formula for deep-

trapping. (d) Drift mobilities for holes from coupon 5 and electrons for cou-

pon 2 calculated from the transit times at different bias voltages. The dashed

lines show the prediction of a dispersion model a¼ 0.75 for the hole mobil-

ity of coupon 5 and a¼ 0.70 for electron mobility of coupon 2.

TABLE I. Coupon details.

Coupon Treat

Voc

(V)

lh

(cm2/V s)

lsh;t

(cm2/V)

le

(cm2/V s)

lse;t

(cm2/V)

1 No 0.48 0.6 3.0� 10�7 1.3 3.9� 10�7

2 Yes 0.69 1.4 2.5� 10�6 0.9 2.2� 10�7

3 Yes 0.75 1.4 2.6� 10�7 0.1 2.1� 10�7

4 Yes 0.73 0.8 1.2� 10�6 0.7 2.2� 10�7

5 No 0.54 1.4 5.8� 10�7 2.6 1.1� 10�6

6 Yes 0.80 1.5 3.8� 10�6 0.5 2.2� 10�7

042106-2 Long et al. Appl. Phys. Lett. 105, 042106 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:  74.79.55.8

On: Tue, 29 Jul 2014 17:50:03



photocharge collection is more spread out than predicted by

the constant drift velocity model. The same conclusion

applies at 0 V, although it is obscured somewhat by deep-

trapping. We measured similar effects for both electrons and

holes in all cells studied. We will return to this apparent

spread in transit times shortly.

In Fig. 2(c), the open squares show the total hole photo-

charge Q(V) collected at 1 ls as a function of the bias voltage

V. The charge measurements are normalized by the value at

�1.0 V, which we equate with Q0. As the voltage increases,

and the magnitude of the electric field diminishes, the charge

Q(V) falls. We attribute this effect to “deep trapping” of the

holes. The solid lines are fits to the Hecht equation20

Q Vð Þ
Q0

¼ lst V0 � Vð Þ
d2

1� exp � d2

lst V0 � Vð Þ

 !" #
; (2)

where d is the thickness of the CdTe layer. lst is a mobility-

lifetime product for deep-trapping; it is not a recombination

ls-product. V0 is related to the built-in electric field but is

not the true built-in potential of the cell. From the fittings,

the lst product for the holes in this cell is 5.8� 10�7 cm2/V,

and for electrons it is 1.1� 10�6 cm2/V. In Table I, we pres-

ent the Hecht fitting parameters for one cell from each of the

six coupons used in this work.

We used the values of V0 from the Hecht analysis to cal-

culate drift-mobilities for the electrons and holes using the

expression

ld ¼
d2

2 V0 � Vð ÞtT
: (3)

In Fig. 2(d), we present these drift-mobility estimates as a

function of the half-collection transit time, which varies with

the electric field across the CdTe layer. We show the hole

results for coupon 5 and the electron results for coupon 2;

the photocharge transients used to calculate these mobilities

are given in the supplementary material.15 There is little var-

iation with electric field; the mobility values in Figs. 1 and 3,

and Table I are from linear fits to the transit time—voltage

relation assuming a constant mobility.

We now return to the apparent spread of transit times in

Fig. 2(b). “Dispersion,”21 which is commonly used to

interpret drift-mobility measurements in non-crystalline

semiconductors, is a possible explanation.17,22,23 In hydro-

genated amorphous silicon and related materials, dispersion

results from multiple-trapping in an exponential bandtail of

localized electronic states lying just beyond the band edges.

As discussed in the supplementary material,15 dispersion can

account for the form of the photocharge transients (cf.

Fig. 2(b)). However, dispersion also implies an intrinsic,

power-law dependence of the drift-mobility upon the typical

transit time tT; these predictions are shown as the dashed

lines in Fig. 2(d). We do not see the predicted dependence of

the mobility upon the transit time, and we therefore exclude

this mechanism.

We speculate that lateral variation of the drift mobility,

presumably from crystallite to crystallite, is the reason for

the spread of transit times. This mechanism is broadly con-

sistent with previous work on micro-uniformity of CdTe

cells and films, which shows significant lateral variation in

quantum efficiency and photoluminescence lifetime.2,24

The time-of-flight procedures described above worked

well for all cells excepting for the electron measurements on

coupon 6. These cells had strong trapping near the back

interface. To obtain electron drift mobilities in these cells,

we used transients recorded using an 850 nm wavelength

laser diode, which is weakly absorbed throughout the CdTe

film, as well as the hole transient obtained with front illumi-

nation and the 660 nm laser. The details of this more com-

plex procedure were published previously.25

In Fig. 3, we show the correlation of the open-circuit

voltages VOC with the hole and electron drift mobilities.

There is no clear relationship of the hole drift mobility to

VOC, but for the electron drift mobility there is a negative

correlation: untreated cells with lower VOC correspond to

larger values of the electron drift mobility than do the

treated, higher VOC cells.

We speculate that the change in the electron drift mobil-

ity with treatment reflects a change in the conduction band

edge, which is consistent with previously reported effects of

post-deposition treatments on the interband absorption spec-

trum of thin films of CdTe.26 Presumably, the treatment has

relatively little effect on the valence bandedge, although we

do not understand why the valence bandedge would be less

sensitive to treatment than the conduction bandedge. VOC is

mainly influenced by electron-hole recombination processes,

which are greatly suppressed by CdCl2 treatment. While

mobilities are not expected to affect VOC directly, when

recombination is diffusion-limited the lifetime increases as

the minority carrier mobility shrinks.13,14

Takahashi et al.4 studied Schottky diodes based on elec-

trodeposited CdTe films. Their values of the electron and

hole drift mobilities were about 2� 101 cm2/V s, which are

somewhat larger than our values. Their results appear

reasonably consistent with the present measurements, given

the differences in the films. Gilmore et al. reported a strong

effect of illumination on the Hall effect of their undoped

CdTe films9 and inferred an intragrain electron mobility of

about 3� 102 cm2/V s. Our time-of-flight results do not seem

compatible with theirs, but there are substantial differences

between the experiments. Hall effect measurements are done

with transport parallel to the substrate of simple films,

FIG. 3. Correlation of the electron and hole mobilities vs open circuit

voltage under solar simulator illumination. The different symbols indicate

different coupons. The solid symbols represent measurements on untreated

coupons; the open symbols are for coupons following treatment.

042106-3 Long et al. Appl. Phys. Lett. 105, 042106 (2014)
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whereas the drift mobilities are measured normal to the sub-

strate in multilayer photodiode structures. Previous authors

have generally attributed the reduction in drift-mobilities of

thin films compared with single crystals to grain boundary

effects. The grains in thin films used for contemporary solar

cells are fairly large and can extend through the CdTe layer,2

so in the drift mobility experiments reported here the effects

of traversing grain boundary should be minor. We therefore

favor microscopic mechanisms for mobility reduction over

more macroscopic mechanisms such as grain boundaries.

Such microscopic mechanisms would be effective within

each crystallite; electrostatic fluctuations due to charged

defects, dislocations, and chemical disorder of vacancies,

interstitials, etc., are possibilities. These broad speculations

do not address the interesting feature that, relative to crystal-

line values, the electron mobility is reduced more in the pol-

ycrystalline thin films than is the hole mobility. We do note

that the effects of disorder on electron and hole drift mobili-

ties in hydrogenated amorphous silicon are also very

different.23

In Table I, we report deep-trapping mobility-lifetime

products for both electrons and holes. There have been many

previous studies of trapping in CdTe solar cells with deep

level transient spectroscopy (DLTS) and other methods.27

These typically report the location of the trap level within

the energy gap, but not mobility-lifetime products. One tran-

sient photoconductivity measurement has been reported

showing a 6 ls lifetime for holes;28 this is consistent with the

deep-trapping lifetime in the present work, which is about

1 ls for holes. Deep trapping mobility-lifetime products have

been reported for single crystal CdTe detectors.5 The values

from these measurements are around 8� 10�4 cm2/V for

electrons and 7� 10�5 cm2/V for holes, which are much

larger than our measurements. The present mobility-lifetime

products can also be converted into a trapping diffusion

length Lt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkT=eÞlst

p
, where kT/e is the ratio of the ther-

mal energy kT to the electron charge. The range in Table I

then yields Lt values from 0.7 to 3 lm at room temperature.

This is reasonably consistent with diffusion lengths reported

from electron beam-induced current (EBIC) measurements29

and from cathodoluminescence measurements.30

We now turn to the fact that the electron transit times

reported here are hundreds of times longer than time-

resolved photoluminescence lifetimes for cells with compa-

rable VOC values.31 The photoluminescence lifetimes are

nanoseconds or less and have commonly been identified with

the minority carrier (electron) recombination lifetime; for a

recent review, see Ref. 28. Our transit times are for electrons

traversing the film’s entire thickness, but most photolumines-

cence lifetime measurements involve radiative recombina-

tion of photocarriers close to the CdS/CdTe interface. This

appears to leave open the possibility of extremely different

material properties between and bulk and the interface, but

recent two-photon measurements of luminescence lifetimes

largely rule this out.32 The fact that drift mobilities are fairly

low in thin film CdTe suggests to us that the fast lumines-

cence lifetimes may probe an exciton dissociation process

instead of the ultimate photocarrier recombination process,

which is the interpretation commonly applied to low mobil-

ity organic solar cell materials.33
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CAPACITANCE MEASUREMENTS  

For all cells we measured the room-temperature capacitance at 1 kHz. We have graphed results 

for the six coupons at room temperature in Fig. S1 using the form suggested by the Schottky 

analysis1:  
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where NA is the 

acceptor doping 

level, ɛ is the 

relative 

dielectric 

constant, and V0 

is nominally the 

built-in 

potential. The 

capacitance for 

the untreated 

samples shows 

only a small 

change with the 

reverse bias, 

which indicates 

nearly full 

depletion even 

at short circuit. For the cell from coupon 5, we also show the geometrical capacitance expected 

from a profilometer measurement, which agrees well with the capacitance measurements under -

2 V of reverse bias. 

DISPERSIVE TRANSPORT 

In this section we briefly review the main features of “dispersive transport”. We illustrate how 

the dispersive form can be fitted to the photocharge transients that we measure, and we present 

the dispersive relationship between the drift-mobility and the transit time. 

The drift mobility d is defined as:  
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Fig. S1. Dark capacitance measurements (103 Hz) on cells from all six 

coupons. Coupon 1 and 5 are untreated, the remaining coupons received 

post deposition treatments. We illustrate the Schottky model fits for the 

cells from coupons 4 and 6. 
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where 𝐸 is the electric field magnitude and L is the displacement of the photocarrier distribution 

following photogeneration at time  𝑡 = 0. In this paper we’ve defined the transit time 𝑡𝑇 as 

corresponding to a displacement of half the thickness 𝑑 of the CdTe layer, so 𝐿 = 𝑑/2. This 

transit time corresponds to collection of half of the total charge Q0 in the external bias circuit. 

For ordinary transport with a constant drift-velocity, and neglecting deep-trapping, we can write 

Q(t) as:  
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In Fig. S2, we show the photocharge transient of a cell from coupon 5 at -1.0V bias along with 

the non-dispersive form of equation (3) with the same transit time. We can see the fitting for 

non-dispersive transport doesn’t fit the photocharge well, especially for times longer than the 

transit time. We chose the -1.0 V transient for illustrative purposes because the deep trapping 

time of about 400 ns does not noticeably affect the photocharge transient. 

We examined the possibility that the slow collection of the photocharge corresponds to the 

dispersive transport model.2 For the dispersive case, the photocurrent transient is written:  
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where 𝛼 is the dispersion parameter and 𝑡𝑇 is the transit time. With dispersive transport, the 

power law for the photocurrent decay changes at tT. The current prefactor 𝑖0 = 𝛼𝑄0 (2𝑡𝑇)⁄  , 

where 𝑄0 is defined as the photocharge collected at long times by integration of the photocurrent. 

The corresponding photocharge transient is:  
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Note that the transit time still corresponds to 

collection of half the photocharge Q0/2. The 

curved line in Fig. S2 compares this form to a 

CdTe hole transient (front illumination) using 

α=0.75. Note that the measured data are slowed 

somewhat by an electronic risetime of about 40 

ns. The fitting gives a reasonable account for the 

photocharge transient. 
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Fig. S2. Transient photocharge for coupon 5 

at -1.0V. The straight line shows the fitting 

for non-dispersive model and the curved 

line shows the fitting for dispersion model 

with α=0.75.  
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An important feature of dispersive transport is that the drift mobility depends upon the transit 

time. The drift mobility 𝜇𝐷 is:   
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where 𝑑 is the thickness of the sample and 𝑉 is the voltage across the sample. Eq. (6) was used to 

calculate the dispersive curves used in Fig. 2(d) of the letter. We did not include deep-trapping in 

these calculations. The transit times are all much shorter than the times at which deep-trapping 

would significantly affect dispersive transients.  

We emphasize that dispersion does not imply a nonlinear field-dependence to the photocurrents; 

prior to transit, the average displacement of a photocarrier distribution photogenerated at time 

𝑡 = 0 remains proportional to the electric field. 𝜇0 and 𝜈 are parameters whose physical 

significance depends upon the microscopic mechanism underlying the dispersion. Thus in the 

exponential bandtail multiple-trapping model, they are the band mobility and the trap attempt-to-

escape frequency, respectively3. The hallmark of this multiple-trapping model is the temperature 

dependence of the dispersion parameter 𝛼 = 𝑘𝑇 Δ𝐸⁄ , where 𝑘𝑇 is the thermal energy and Δ𝐸 is 

the width of the exponential bandtail. 

PHOTOCHARGE TRANSIENTS FOR ELECTRONS 

Fig. S3 below shows the photocharge transients measured at several voltages using rear 

illumination and a 660 nm laser wavelength. The transients are dominated by electron transport. 

As can be seen in Fig. S1, the capacitance measurements do indicate some dark space charge in 

the sample. It was especially noticeable for the cell from coupon 6. This leads to some 

nonuniformity in the electric field. In addition, deep-trapping modifies the simple equation of the 

transit time with the photocharge risetime. We have discussed both of these effects in previous 

work; see appendix B of ref.4. In the present work, we neglected these effects, which are smaller 

than the effects of a distribution of transit times. 
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Fig. S3: Transient photocharge 

measurements following a 4 ns 

laser pulse (660 nm wavelength) 

through the back contact of a cell 

from coupon 2. The pulsed bias 

voltages were 0, -0.2, -0.6, -0.8, 

and -1.0 V. 
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